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Supplement Information  
S1 Methods  
S1.1 Computational and statistical environment 
All the network estimations and ECv calculations were performed using the SHIROKANE 

supercomputer system at Human Genome Center, the Institute of Medical Science, the University of 

Tokyo.   

All statistical analyses were performed using Python unless stated otherwise.  

Hierarchical clustering was performed using the “ward” methods and Euclidean distance in Python 

library. The survival analysis was evaluated using the log-rank test in R package survival and Python 

library lifelines. Molecular function analysis was performed using Ingenuity Pathway Analysis (IPA)1. 

Network visualization and analysis were performed in Cytoscape2. 

 
S2 Result  
S2.1 Dataset 
These RNA-seq data were downloaded from UCSC Xena3. Clinical data were downloaded from GDC 

Data Portal at TCGA to evaluate the results of the analysis. Patients were selected for whom both the 

RNA-seq data of the tumor specimens and the clinical data (five years) for each cancer type were 

available. Next, the genes with a mean percentile under 15 were removed from the RNA-seq data of 

each dataset. Ultimately, 365 patients were selected for STAD and 692 patients for LUNG. The 

preprocessed RNA-seq datasets comprised different sets of 17,450 genes. 

 

S2.2 Network estimation 
The NNSR algorithm determines the final network structure by extracting the edges whose estimated 

frequencies are greater than a given threshold. A threshold of 0.1 was used in our analysis, as in Tanaka 

et al. (2020)4. This algorithm repeatedly estimates subnetworks, including a thousand nodes, such that 

we first checked whether the algorithm produced stable networks. The network estimation was 

conducted independently three times, and the concordance of the estimated edges was calculated 



between the two estimated networks as an indicator of robustness in the estimated networks, as in 

Tanaka et al. (2020)4. Consequently, when the number of iterations (T) of the subnetwork estimation 

was 100,000, as recommended by Tamada et al. (2011)5, the concordance was less than 95%. However, 

since this is slightly below the necessary level of network stability, we used T = 300,000 and obtained 

a concordance of 96.3% and 95.6%, for STAD and LUNG, respectively (Table S1). These results 

suggested that the structures of the estimated networks were stable, and that T=300,000 was sufficient 

for our analysis. 

 

S2.3 Comparison of the ∆"ECv and FC distribution 
The distributions between ∆"𝐸𝐶𝑣 and log2 fold change (FC) were compared to present that only the 

limited edges show significant differences. The distribution of ∆"𝐸𝐶𝑣 is much steeper than that of log2 

FC. The FC for RNA-seq data is defined as one subtype/the rest of two subtypes. We overlapped 

∆"𝐸𝐶𝑣 and FC in the same histogram (Fig. 2c-e, Fig. S2). 

 

S2.4 Hierarchical clustering for RNA-seq data 
For LUNG dataset, the top 310 genes showing the highest variances of the RNA-seq data were selected 

for hierarchical clustering, as the 250 edges with the ECv matrix in LUNG were composed of 310 

genes. 

 

 

 

 

Table S1. Concordance of the estimated networks.  

  T = 100,000  T = 300,000  

STAD  92.7%  96.3%  

LUNG  92.7%  95.6%  

  

Table S2. The summarization of the number of patients across subtypes identified by the clustering 

of ECv matrix and RNA-seq data.  

  

  

  

  

  RNA-seq    

subtype 1  subtype 2  subtype 3  

  subtype 1  91  8  15  

ECv  subtype 2  43  0  33  

  subtype 3  77  24  74  



Table S3. The top five terms of biological functions.  

 cancer type  subtype 1  subtype 2  subtype 3  

STAD  cardiovascular system 

development and function 

cellular movement cellular development 

 skeletal and muscular system 

development and function 

embryonic development cellular growth  

and proliferation 

 organismal development organismal development hematological system 

development and function 

 cellular assembly  

and organization 

nervous system development 

and function 

lymphoid tissue structure 

and development 

 tissue development tissue development cell-to-cell signaling  

and interaction 

LUNG  amino acid metabolism cellular function  

and maintenance 

embryonic development 

 cell death and survival cellular movement hair and skin development 

and function 

 molecular transport cell-to-cell signaling  

and interaction 

organ development 

 small molecule biochemistry cell cycle organismal development 

 carbohydrate metabolism cellular assembly  

and organization 

tissue development 

 

 

 

 

 

 

 

 

 

 

 



Table S4. The summarization of the number of patients across subtypes identified by the clustering 

of ECv matrix and RNA-seq data.  

       RNA-seq   

       subtype 1  subtype 2  subtype 3  all  

ECv  

subtype 1  

  

LUAD 
LUSC  

4 
224  

0  

0  

0  

0  

4 
224  

subtype 2  

  

LUAD 
LUSC  

0  

0  

51  

10  

57 
3  

108 
13  

subtype 3  LUAD  1  48  266  315  

   LUSC  3  7  18  28  

all  
 LUAD 5  

LUSC 227  

LUAD  99  

LUSC 17  

LUAD 323  

LUSC 21  

LUAD 427  

LUSC 265  

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. Heatmap showing hierarchical clustering for the ECv matrix of LUNG dataset. 
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Figure S2. The distribution of ∆"𝐸𝐶𝑣	of	 edges	 and	 log2	 fold	 change	 (FC)	 in	 genes	 in	LUNG	
datasets.	Dashed	line	represents	the	 ∆"𝐸𝐶𝑣	of	the	top	1.0%	of	total	edges	in	every	subtype.	
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Figure S3. The Venn diagram represents the number of edges of LUNG dataset. Colored area in the 

Venn diagram represent subtype-specific edges in each subtype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Figure S4. Analysis in the LUNG dataset. (a) Kaplan-Meier survival probability curves of patients 

for the identified ECv-based subtypes. The log rank test 𝜌-value between two subtypes; 3.1e-08 

(subtype 1 vs 2) < 0.05, 9.6e-15 (subtype 2 vs 3) > 0.05, and 0.099 (subtype 2 vs 3) > 0.05. (b) Heatmap 

of the RNA-seq value matrix. (c) Kaplan-Meier survival probability curves of patients for the 

identified RNA-seq based subtypes. The log rank test 𝜌 -value between two subtypes; 9.8e-05 

(subtype 1 vs 2) < 0.05, 5.5e-15 (subtype 1 vs 3) < 0.05, and 3.6e-03 (subtype 2 vs 3) < 0.05. 
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Figure S5. Visualization of subtype-specific subnetworks in the LUNG datasets.  

(a) Subnetworks of subtype-specific edges were highlighted with the basal network (blue). (b-d) The 

biggest component in the subnetwork of subtype-specific edges in each subtype. Edges and nodes 

were colored by each subtype; subtype 1 (gray), subtype 2 (magenta), and subtype 3 (green). 

Colored nodes were hub nodes in each subtype and the color gradient represents the outdegree of 

hubs. 
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