Novel cancer subtyping method based on patient-specific molecular networks

Authors: Mai Adachi Nakazawa, Yoshinori Tamada, Yoshihisa Tanaka, Marie Ikeguchi, Kako Higashihara, Yasushi Okuno

All supplementary data is available at https://ytlab.jp/suppl/nakazawa2021/index.html

Supplement Information

S1 Methods

S1.1 Computational and statistical environment

All the network estimations and ECv calculations were performed using the SHIROKANE supercomputer system at Human Genome Center, the Institute of Medical Science, the University of Tokyo.

All statistical analyses were performed using Python unless stated otherwise.

Hierarchical clustering was performed using the "ward" methods and Euclidean distance in Python library. The survival analysis was evaluated using the log-rank test in R package survival and Python library lifelines. Molecular function analysis was performed using Ingenuity Pathway Analysis (IPA)¹. Network visualization and analysis were performed in Cytoscape².

S2 Result

S2.1 Dataset

These RNA-seq data were downloaded from UCSC Xena³. Clinical data were downloaded from GDC Data Portal at TCGA to evaluate the results of the analysis. Patients were selected for whom both the RNA-seq data of the tumor specimens and the clinical data (five years) for each cancer type were available. Next, the genes with a mean percentile under 15 were removed from the RNA-seq data of each dataset. Ultimately, 365 patients were selected for STAD and 692 patients for LUNG. The preprocessed RNA-seq datasets comprised different sets of 17,450 genes.

S2.2 Network estimation

The NNSR algorithm determines the final network structure by extracting the edges whose estimated frequencies are greater than a given threshold. A threshold of 0.1 was used in our analysis, as in Tanaka et al. $(2020)^4$. This algorithm repeatedly estimates subnetworks, including a thousand nodes, such that we first checked whether the algorithm produced stable networks. The network estimation was conducted independently three times, and the concordance of the estimated edges was calculated

between the two estimated networks as an indicator of robustness in the estimated networks, as in Tanaka et al. $(2020)^4$. Consequently, when the number of iterations (*T*) of the subnetwork estimation was 100,000, as recommended by Tamada et al. $(2011)^5$, the concordance was less than 95%. However, since this is slightly below the necessary level of network stability, we used *T* = 300,000 and obtained a concordance of 96.3% and 95.6%, for STAD and LUNG, respectively (Table S1). These results suggested that the structures of the estimated networks were stable, and that *T*=300,000 was sufficient for our analysis.

S2.3 Comparison of the $\tilde{\Delta}ECv$ and FC distribution

The distributions between $\tilde{\Delta}ECv$ and \log_2 fold change (FC) were compared to present that only the limited edges show significant differences. The distribution of $\tilde{\Delta}ECv$ is much steeper than that of \log_2 FC. The FC for RNA-seq data is defined as one subtype/the rest of two subtypes. We overlapped $\tilde{\Delta}ECv$ and FC in the same histogram (Fig. 2c-e, Fig. S2).

S2.4 Hierarchical clustering for RNA-seq data

For LUNG dataset, the top 310 genes showing the highest variances of the RNA-seq data were selected for hierarchical clustering, as the 250 edges with the ECv matrix in LUNG were composed of 310 genes.

Table S1. Concordance of the estimated networks.	

	T = 100,000	<i>T</i> = 300,000
STAD	92.7%	96.3%
LUNG	92.7%	95.6%

Table S2. The summarization of the number of patients across subtypes identified by the clustering of ECv matrix and RNA-seq data.

		RNA-seq		
_		subtype 1	subtype 2	subtype 3
	subtype 1	91	8	15
ECv	subtype 2	43	0	33
	subtype 3	77	24	74

cancer type	subtype 1	subtype 2	subtype 3
STAD	cardiovascular system	cellular movement	cellular development
	development and function		
	skeletal and muscular system	embryonic development	cellular growth
	development and function		and proliferation
	organismal development	organismal development	hematological system
			development and function
	cellular assembly	nervous system development	lymphoid tissue structure
	and organization	and function	and development
	tissue development	tissue development	cell-to-cell signaling
			and interaction
LUNG	amino acid metabolism	cellular function	embryonic development
		and maintenance	
	cell death and survival	cellular movement	hair and skin development
			and function
	molecular transport	cell-to-cell signaling	organ development
		and interaction	
	small molecule biochemistry	cell cycle	organismal development
	carbohydrate metabolism	cellular assembly	tissue development
		and organization	

Table S3. The top five terms of biological functions.

			RNA-seq			
			subtype 1	subtype 2	subtype 3	all
	subtype 1	LUAD	4	0	0	4
		LUSC	224	0	0	224
	subtype 2	LUAD	0	51	57	108
		LUSC	0	10	3	13
ECv	subtype 3	LUAD	1	48	266	315
		LUSC	3	7	18	28
	-11		LUAD 5	LUAD 99	LUAD 323	LUAD 427
all			LUSC 227	LUSC 17	LUSC 21	LUSC 265

Table S4. The summarization of the number of patients across subtypes identified by the clustering of ECv matrix and RNA-seq data.

Figure S1. Heatmap showing hierarchical clustering for the ECv matrix of LUNG dataset.

Figure S2. The distribution of $\tilde{\Delta}ECv$ of edges and \log_2 fold change (FC) in genes in LUNG datasets. Dashed line represents the $\tilde{\Delta}ECv$ of the top 1.0% of total edges in every subtype.

Figure S3. The Venn diagram represents the number of edges of LUNG dataset. Colored area in the Venn diagram represent subtype-specific edges in each subtype.

Figure S4. Analysis in the LUNG dataset. (a) Kaplan-Meier survival probability curves of patients for the identified ECv-based subtypes. The log rank test ρ -value between two subtypes; 3.1e-08 (subtype 1 vs 2) < 0.05, 9.6e-15 (subtype 2 vs 3) > 0.05, and 0.099 (subtype 2 vs 3) > 0.05. (b) Heatmap of the RNA-seq value matrix. (c) Kaplan-Meier survival probability curves of patients for the identified RNA-seq based subtypes. The log rank test ρ -value between two subtypes; 9.8e-05 (subtype 1 vs 2) < 0.05, 5.5e-15 (subtype 1 vs 3) < 0.05, and 3.6e-03 (subtype 2 vs 3) < 0.05.

(a) Subnetworks of subtype-specific edges were highlighted with the basal network (blue). (b-d) The biggest component in the subnetwork of subtype-specific edges in each subtype. Edges and nodes were colored by each subtype; subtype 1 (gray), subtype 2 (magenta), and subtype 3 (green). Colored nodes were hub nodes in each subtype and the color gradient represents the outdegree of hubs.

Reference

- Krämer, A. *et al.* (2014) Causal analysis approaches in Ingenuity Pathway Analysis. *Bioinformatics*, **30**, 523–530.
- Shannon, P. *et al.* (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. *Genome Res.*, 13, 2498–2504.
- 3. Goldman, M. *et al.* (2019) The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. *bioRxiv*, 326470.
- 4. Tanaka, Y. *et al.* (2020) System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork. *Biomolecules*, **10**, 306.
- Tamada, Y. *et al.* (2011) Estimating genome-wide gene networks using nonparametric bayesian network models on massively parallel computers. *IEEE/ACM Trans. Comput. Biol. Bioinform.*, 8, 683–697.